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SI APPENDIX 
 

In the SI Appendix we present the mathematical derivations and underpinnings for various 
equations in the main text. Appendix A gives the derivation of the scaling property of the spin 
dipole-dipole spectral densities; Appendix B provides the relationship between the time-derivative 
of the correlation function and the high-frequency limit of the spectral densities; Appendix C 
provides the derivation of Eq. (17) of the main text that relates the high-field limit of the spectral 
densities and <r-8>norm; Appendix D gives the derivation of an analytic expression for the spectral 
density function in the case of the non-uniform hardsphere model in the presence of a square-well 
potential; and finally in Appendix E, we outline the fitting procedure used for the “standard” outer- 
and inner-sphere model given by Eq. (26) of the main text 
 
Appendix A. Derivation of the scaling property of the spectral densities 

The scaling property of the spectral densities was first proposed by Melchior and Fries1 and 
derived for the force-free hardsphere (FFHS) model.1, 2 We briefly summarize the derivation of 
the scaling property in Appendix A. 

We consider a cosolute and a protein that obey the Smoluchowski equation given by:3-5 
 
 

                      (A1) 

 
where is the conditional probability density of finding the cosolute at coordinate 

 and time t, initially located at , with a translational diffusion constant ;  are the 
collective coordinates ;  is the vector pointing from the center of the protein to the 
center of the cosolute;  and  are the unit vectors between the center of the protein or the cosolute 
to the proton or electron spin, respectively. The collective vector , therefore, specifies the 
orientation and relative position of the protein and cosolute. The relative translational diffusion 
constant can be dependent on ; i.e., . To discriminate between -independent and                     
-dependent relative translation diffusion constants, we define the bulk translational diffusion 
constant  as the relative translational diffusion constant when the protein and cosolute are far 
away from one another: 
 
                          (A2) 
 
where Dtrans,P and Dtrans,S are the translational diffusion constants for the protein and cosolute, 
respectively. 

 The operator  is given by: 
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         (A3) 

 
where DRot,P and DRot,S are the rotational diffusion constants for the protein P and cosolute S, 
respectively, and the function  is defined as . The rotational 
Laplacian operator of the protein  is given by: 
 

           (A4) 

 
where qP and fP are the polar and azimuthal angles, respectively, of the unit vector .  is 
given by Eq. (A4) by replacing the subscript P with the subscript S.   

 
The spin dipole-dipole correlation function shown in Eq. (1) of the main text is given by: 
  

          (A5)  

 
where nS is the number density given by the number of cosolute molecules NS divided by the 
sample volume V (i.e., nS = NS/V). The corresponding spectral density is given by: 
   

              (A6) 

 
It should be noted that Eq. (A6) is same as Eq. (1) of the main text except that we use the notation 

instead of J(w) to emphasize that the spectral density is taken when the translational 
diffusion constant has a value . 

Let us assume that the ratios  and  are independent of temperature. 
Such an assumption is reasonable if the bulk translational and rotational diffusion constants are 
given by the Stoke-Einstein relations, 
 

         ,               (A7) 

where RP is the protein radius. The translational and rotational diffusion constants for the cosolute 
are given by Eq. (A7) by replacing RP with RS, the cosolute radius.  Then the ratio of the rotational 
and trasnalational diffusion constants becomes: 
 

                (A8)  
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which is independent of the viscosity and temperature of the system. A similar expression holds 
true for the cosolute by interchanging the subscripts P and S. Further, let us assume that and 

are independent of temperature over the experimental temperature range. This assumption 
is rigorously valid only for the hard-sphere model where U(R) = 0 or ¥, but represents an 
approximation for real systems since b depends on temperature [i.e., b = (kBT)-1 ] and the potential 
of the mean force U(R) could also be temperature dependent due, for example, to protein structural 
changes. Under the above assumptions, the operator  becomes independent of temperature. 

Changing the independent variable from t to  defines a new function given by 
 

              (A8) 
 
Eq. (A1) can be written as: 
 

               (A9) 

 
Clearly,  does not explicitly depend on  or temperature because none of the 
variables in Eq. (A9) are temperature-dependent, given the assumptions stated above. Let us define 
a new function given by: 
 

             (A10) 

 
From a direct comparison of Eqs. (A5) and (A10), we observe that 
 
                 (A11) 
 
Taking the Laplace transfrom of Eq. (A11), one obtains: 
 

         

                           

            (A12) 
 
where is given by: 
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                (A13) 

 
Rearranging Eq.(A12) one gets: 
 
               (A14) 
 
or equivalently 
 
              (A15) 
 
where . 
 
 
 
Appendix B. Relationship between the derivative of the correlation function and the high-
frequency limit of the spectral density 
 

Here we show that the first derivative of the correlation function C(t) and the high-frequency 
limit of the spectral density are related by:3 

 
              (B1) 

 
We assume that (a) C(t) is a continuous function whose first, C´(t), and second, C´´(t), 

derivatives are well defined; (b) ; and (c) . 

Below we show that Eq. (B1) holds when the correlation function C(t) satisfies the assumptions 
(a)-(c). 
 
 Integrating by parts Eq. (2) of the main yields the following results: 
 

           

                  

                     (B2) 
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where we assume that  in the second line of Eq. (B2) and sin(wt) = 0 at t = 0.  Eq. 

(B2) makes sense because, from assumptions (a) and (b), integration is finite and the derivatives 
are well-defined.  Assuming that , it follows that 

 
               (B3) 
 
From the Riemann-Lebesgue Lemma,6 the second term in the last equality in Eq. (B2) multiplied 
by w2 vanishes in the limit . Therefore,  
 

        (B4) 

 
It is important to note that both experimental and simulated data show that the correlation 

function C(t) for spin dipole-dipole interactions is proportional to t-3/2 at long t.1-3, 7-9 From this 
observation, it immediately follows that , and hence the above analysis 

is expected to be valid. 
 
 
Appendix C. Derivation of Eq. (17) in the main text 
 

Here we derive the Eq. (17) which states that the high-field limit of the spectral density is 
approximately proportional to <r-8>norm. 

Suppose that the protein-cosolute system follows Smoluchowski Equations given by Eqs. 
(A1)-(A3). We can decompose the contributions from rotational and translational motions to the 
correlation function C(t) as follows:10-12 

 

         (C1) 

 
where  and . Cl(t) is given by 

 

         (C2) 

 
where  is the conditional probability density of finding the center-to-center vector  at 

time t given that the vector was initially at o, and is the solution of 
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         (C3) 

 
with a reflective boundary condition of 
 
           (C4) 

 
where S denotes the surface of the protein;  is the unit vector normal to S; qR and fR are the polar 
and azimuthal angles of the unit vector ; and Yl,m(qR, fR) are the corresponding spherical 
harmonics. It should be noted that Cl(t) only depends on . It follows that J(w) is given by 
 

 (C5) 

 

where ; and Re jl(z) denote taking the real part of jl(z).  

Consider the adjoint Smoluchowski Equation13 of Eq.(C3) given by: 
 

         (C6) 

 
where the gradient operator now acts on . The corresponding boundary condition (cf. Eq. C4) 
is now given by: 
 
            (C7) 

 
Let us consider the correlation function for arbitrary quantities and  given by: 
 

        (C8) 
where the integration is taken over all the accessible volume of the cosolute. We assume that CAB(t) 
goes to 0 as . Define a new function given by: 

              (C9) 

 
It follows from Eq. (C7) that 
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               (C10) 

 
In addition, satisfies the relation 
    
                (C11) 
 
Then it follows that: 
 

     

                

            

                (C12) 

 
where we made use of Eq.( C5) in the second line, and the definition  given by Eq. (C9) 
in the third line. The vector calculus identities, given by 
 
              (C13) 
 
where  is any vector field and y is any scalar field, was used in the fourth line of Eq. (C12). 
Integration by parts was used in the fourth line of Eq. (C12). And finally, the divergence theorem 
followed by the boundary condition given by Eq. (C10) and the initial condition given by Eq. 
(C11) were used.  

Setting , we obtain: 

 

      

            



 S9 

 

 

 

             (C14) 

 
where the relations 
 

                     (C15) 

and 

                    (C16) 

 
were used in Eq. (C14), where pl is the Legendre polynomial. 
  

Using Eqs. (B1), (C1) and (C14), we obtain: 
 

      

       

       
               

        

           (C17) 
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The following relation12 was used in Eq. (C17): 
 

         (C18) 

 
Neglecting the second term in the last equality in Eq. (C17), we obtain: 
 

               (C19) 

 
For the force-free hard-sphere model, we get: 
 
 
       

                  

                  

           
           (C20) 

Substituting Eq. (C20) into Eq. (C5) yields the analytic expression for w2J(w). The analytic 
expression of <r-8>norm is given by substituting k = 3 in Eq. (C18): 
 

 

  

             
            (C21) 
 
 
Appendix D. The spectral density for the non-uniform diffusion hardsphere model with a 
square potential 

An analytic expression for the spectral density for non-uniform diffusion hardsphere model in 
the presence of the square well potential was derived by Frezzato et al.3 Here we summarize their 
findings.  

The square-well potential model is defined by: 
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                    (D1) 

 
where a is the Boltzmann factor, RC is the contact distance, and Rb is the boundary of the local 
domain (see Fig. 2 of the main text). Frezzato et al.3 found an analytical expression for the square-
well model with translational diffusion constants  and n = 1 or 0 depending on whether 
cosolute is in region 1 or 0. This notation corresponds to the local and bulk domains in the current 
work. The result is reproduced here: 
        

            (D2) 

where 
 

          ,      ,      , 

 
 il and kl are the modified spherical Bessel functions of the first and second kind. The derivatives 

of il and kl are defined by  and . 
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For a = 1 and  = 1, we obtain the FFHS spectral densities given by19 

 

         (D3) 

 

where  and  is the modified Bessel function of the second kind. 

 

 
Appendix E. Data fitting procedure for the outer- and inner- sphere model 
 

Instead of parameterizing the contact distance RC, the relative translation diffusion coefficient 
Dtrans and the spin dipole-dipole correlation time tin for the bound cosolute, we define the following 
3 parameters: 

 

                           (E1) 

 
Using the above definitions of k1, k2, and k3, the s term that appears in Eq. (24) of the main text 
can be expressed as: 
 

                          (E2) 

 
We also define new fitting functions given by: 
 

                         (E3) 

        

            (E4) 

 
The fitting function defined in Eq. (26) of the main text can then be expressed as: 
 

ζ =
zRC

2

Dtrans
Kl (x)
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                    (E5) 
 
Using Eq. (E5) for fitting the experimental data rather than Eq. (23) in the main text has the 
advantage that the parameters k1, k2, and k3 are more convenient than RC, Dtrans and tinner since k1 
can be restrained to range from 0 to 1. As a result, Eq. (E5) is guaranteed to satisfy the relation 
Jin+out(0) = J(0). We also found that parameterizing k2 is more practical than parameterizing Dtrans. 
We can easily convert k2 into Dtrans by simply taking the -1/3 power of k2. RC and Cinner are given 
by: 
 

                          (E5)         

 

            (E6) 

 
Next, we derive Eq. (27) of the main text. Using Eq. (8) in  the main text, we get 
 

                (E7)  

 
The first term in Eq. (E7) involves integration of Eq. (24) of the main text from 0 to ∞. Instead of 
evaluating the integral directly, we used the fact that the center-to-center FFHS model describes 
the hard sphere model with nuclear and electron spins at their respective centers and <r-6>norm for 
the center-to-center FFHS model is given by 4p/3RC3  ; we get  
 

                   (E8) 

 
For the second term in Eq. (E7), we use the relation  
 

                      (E9) 

 
The direct evaluation of the integral of Eq. (25) yields 
 

                    (E10) 
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Eq. (27) in the main text follows from adding Eqs. (E8) and (E10). 
 

Finally, we derive Eq. (28) of the main text. It is easy to see that the high-frequency limit of 
Eq. (25) in the main text is given by: 

 

                      (E11) 

 
For the center-to-center FFHS model (i.e., p = s = 0), the only term that is nonvanishing is l = 0. 
Substituting Eq. (C20) with l = 0, one obtains: 
   

                      (E12) 

 
Summing Eqs. (E11) and (E12), followed by substitution into Eq. (17) in the main text, yields Eq. 
(27) in the main text. 
  



 S15 

Supplimentary Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Comparison between exact < 𝑟!" >#$%&exact  and approximate < 𝑟!" >#$%&

,--%$.	values (see Eq. 17 
of the main text). < 𝑟!" >#$%&

,--%$.  and < 𝑟!" >#$%&exat were calculated using Eqs. (C19) and (C20), 
respectively. The radii of the protein (RP) and paramagnetic cosolute (RS) were set to 16.2 and 3.5 Å, 
respectively; the contact distance was set to RC = RP + RS; T = 298 K, h = 0.89 cp, and nS = 1 m-3. The 
distance of the nuclear spin from the center of the protein was varied from 0.6 to 14.8 Å, while the electron 
spin on the cosolute was fixed with s = 2.0 Å.  
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Figure S2. The scaling property holds for nuclear magnetic relaxation dispersion (NMRD) 1H-G1 relaxivity 
profiles measured for DMSO, acetone and toluene in the presence of the nitroxide radical TEMPOL at 1H 
Larmor frequencies ranging from 0.01 to 950 MHz and temperatures spanning 25 to 80 °C. Each NMRD 
profile at a given temperature was fitted using Eqs. (3) and (9) from the main text. The fitted curves are 
shown as continuous lines in the left-hand panels. The scaling property was applied using Eq. (22) 
combined with Eq. (3) from the main text for each temperature, and the results are displayed in the right-
hand panels.  The NMRD data and the translational diffusion constants for DMSO, acetone and toluene at 
given tempeature were obtained from Neugebauer et al.14  
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Figure S3 Temperature dependence of 1H-15N HSQC spectra of ubiquitin over a temperature range spanning 
from 4 to 60 oC. (A) 1H-15N  HSQC of ubiquitin at 25 °C with cross-peak assignments labeled. (Note the cross-
peak for E24 is only observed at temperatures of 40 °C and higher. The assignments were based on refs. 15, 16. 
(B) Overlay of the 1H-15N  HSQC spectra at various temperatures ranging from 4 to 60°C. Thecross-peaks are 
colored according to the temperature as indicated on the right-hand side of the figure. All spectra were collected 
at 500 MHz and pH 7.0. 
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Figure S4. Temperature dependence of the normalized translational diffusion constant (Dtrans) for ubiquitin 
and 2,2,5,5-Tetramethyl-3-pyrroline-3-carboxamide (TP). The translational diffusion constants were 
measured using pulse-field-grandient (PFG) NMR diffusion experiments. The data on TP were used to 
estimate the translational diffusion constants for 3-carbamoyl and 3-carboxy PROXYL. The values of Dtrans 
were normalized to their respective Dtrans values at 25 °C. 
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Figure S5. Impact of local intermolecular interactions on J(w) when w/2p = 0 and 900 MHz. The square-
well potential with a hard-sphere defined in Eq. (D1) was used in the simulation. The ratio of J(w) to J(w) 
when a = 1 is plotted as a function of the Boltzmann factor a (see Eq. D1) . The spectral densities at static 
spectrometer fields of 0 and 900 MHz were generated from Eq. (D2) with the radii for the protein (RP) and 
paramagnetic cosolute (RS) set to 16.2 and 3.5 Å, respectively; the contact distance was set to RC = RP + RS; 
T = 298 K, h =0.89 cp, and nS = 1 m-3. The distance of the nuclear and electron spins from the protein and 
paramagnetic cosolute centers, respectively were set to p = 13.7 Å and s = 2.0 Å. The boundary Rb of the 
local domain (see Fig. 2 in the main text) was set to 3.0 Å. 
  



 S20 

 
 
Figure S6. for residues of ubiqutin in the presence of 3-carbamoyl PROXYL using scaling property 
given by Eq. (22) of the main text. The values are obtained from the experimental 1H-G1 values 
measured over a temperature of 4 to 50 °C at several spectrometer frequencies. The J(0) values were 
calculated from the experimental 1H-G2 and 1H-G1 values measured at 25 °C and 600 MHz (green filled-in  
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Figure S6 legend (cont.) 
 
circles). The J(0) and J(wH) values at 600 MHz (green filled-in circles) were used for fitting using Eqs. (9) 
(red dashed curve) or (26) (blue dashed curve). The magenta and cyan circles represent the  
calculated from the experimental 1H-G1 values measured at 500 and 900 MHz over a temperature range of 
4 to 50 °C. The red and blue circles represents the calculated from the experimental 1H-G1 values 
measured at 4 and 25 °C at spectrometer frequencies of 500, 600, 700, 800 and 900 MHz. Note that the red 
and blue circles overlay almost completely with the magenta and cyan circles, and therefore may not be 
clearly visible in this plot. The data points that deviate significantly from the scaling property (i.e., the 
points for which the cyan and magenta circles at 500 and 900 MHz do not overlay) have been removed in 
these plots. 
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Figure S7. for residues of ubiqutin in the presence of 3-carboxy PROXYL using scaling property 
given by Eq. (22) of the main text. The values are obtained from the experimental 1H-G1 values 
measured over a temperature of 4 to 50 °C at several spectrometer frequencies. The J(0) values were 
calculated from the experimental 1H-G2 and 1H-G1 values measured at 25 °C and 600 MHz (green filled-in  
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Figure S7 legend (cont.) 
 
circles). The J(0) and J(wH) values at 600 MHz (green filled-in circles) were used for fitting using Eqs. (9) 
(red dashed curve) or (26) (blue dashed curve). The magenta and cyan circles represent the  
calculated from the experimental 1H-G1 values measured at 500 and 900 MHz over a temperature range of 
4 to 50 °C. The red and blue circles represents the calculated from the experimental 1H-G1 values 
measured at 4 and 25 °C at spectrometer frequencies of 500, 600, 700, 800 and 900 MHz. Note that the red 
and blue circles overlay almost completely with the magenta and cyan circles, and therefore may not be 
clearly visible in this plot. The data points that deviate significantly from the scaling property (i.e., the 
points for which the cyan and magenta circles at 500 and 900 MHz do not overlay) have been removed in 
these plots. 
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Figure S8. Comparison of fENS for ubiquitin calculated from one-field versus multiple fields fitting 
procedures17 in the presence of 3-carbamoyl PROXYL (3CY) or 3-carboxy-PROXYL (3CX). The <r-6>norm 
values for 3CY and 3CX were calculated using the one-field or multiple-fields approach, denoted as 

 and ), respectively, and the corresponding fENS values, given by 

 , are denoted as  and , respectively. (A) Correlation plot 

for  versus . The Q-factor for fENS was calculated as  

where the summation with index i runs over all fields and residues used in the dataset. (B) Correlation between 
 and  values for 3CY and 3CX.  The Q-factor for <r-6>norm was calculated as 

  where the summation with index i runs over all fields and 

residues used in the dataset.  1H-G2 and 1H-G1 dataset from 600 MHz at 25 °C and the observed relative 
translational diffusion constants (see Fig. S4) were used for the one-field fitting procedure. was 
calculated from  1H-G2 and 1H-G1 at 600 MHz  and was used for both one-field and multiple-field fitting. 
All the available extended spectral densities shown in Figs. S6 and S7 were used for the multiple-
field fitting procedure.  
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Figure S9. J(w) for the force-free hard-sphere (FFHS) model and the corresponding fits using Eqs. (9) and 
(23) in the main text. The spectral densities were generated using Eqs. (C5) and (D3) with the protein (RP) 
and paramagnetic cosolute (RS) radii set to 16.2 and 3.5 Å, respectively; the contact distance was set to RC 
= RP + RS; T = 298 K, h =0.89 cp, and nS = 1 m-3. The spectral densities at spectrometer frequencies of 500, 
700 and 900 MHz (blue circles) were used for the fits and the approximate spectral densities given by Eqs. 
(9) and (26) are shown as dashed red and blue curves, respectively. The distance of the nuclear and electron 
spins from the protein and paramagnetic cosolute centers, respectively, were set to p = 0 Å and s = 0 Å in 
panel A and to p = 14.8 Å and   s= 2.0 Å in panel B. The exact values of < 𝑟!/ >#$%&exact  are 5.42 ´ 1026 m-3 
in panel A and 4.96 ´ 1027 m-3 in panel B. The approximate < 𝑟!/ >#$%&

approx values obtained from Eq. (9) are 
5.37 ´ 1026   m-3 in panel A and 4.81  ´ 1027 m-3 in panel B. The approximate < 𝑟!/ >#$%&

approx obtained using 
Eq. (26) are 6.10  ´ 1026 m-3 in panel A and 4.72  ´ 1027 m-3 in panel B.  
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Figure S10. Comparison of fENS values for ubiquitin calculated from the  one-field fitting procedure17 
using Eq. (9) (  ) and the multiple fields fitting procedure using Eq. (26) ( ).  (A) Correlation 
plot of   versus  . (B) Correlation plot of the theoretical Poisson-Boltzmann   potential18 
versus  (left panel) and  (right panel). The values of were shifted vertically by an amount 
D (indicated in the figure) to minimize the root mean square deviation (rmsd) between experimental and 
theoretical fENS profiles. The rmsd was calculated as 
 

                                           

 
where the summation with index i runs over all fields and residues used in the dataset and n is the total number 
of residues in the dataset.  The experimental 1H-G2 and 1H-G1 values measured at 600 MHz at 25 °C , together 
with the observed relative translational diffusion constants (see Fig. S4) were used for the one-field fitting 
procedure. was calculated from 1H-G2 and 1H-G1 at 600 MHz  and used for both one-field and 
multiple-field fittings. All the available extended spectral densities shown in Figs. S6 and S7 were 
used for the multiple-field fitting procedure with Eq. (26).  
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